skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ribeiro, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observations of GeV gamma-ray emission from the well-studied mixed-morphology supernova remnant (SNR) W44 by Fermi-Large Area Telescope and AGILE imply that it is a site of significant cosmic-ray acceleration. The spectral energy distribution (SED) derived from the GeV data suggests that the gamma-ray emission likely originates from the decay of neutral pions generated by cosmic-ray interactions. It is essential to measure the SED of W44 in the X-ray and very-high-energy (VHE) gamma-ray bands to verify the hadronic origin of the emission and to gauge the potential contributions from leptonic emission. We report an upper limit of the nonthermal X-ray flux from W44 of 5  × 10−13erg cm−2s−1in the 0.5–8.0 keV band based on  ∼300 ks of XMM-Newton observations. The X-ray upper limit is consistent with previously estimated hadronic models, but in tension with the leptonic models. We estimate the VHE flux upper limit of  ∼1.2  × 10−12erg s−1cm−2in the 0.5–5.0 TeV range from W44 using data from the Very Energetic Radiation Imaging Telescope Array System. Our nondetection of W44 at VHE wavelengths is in agreement with observations from other imaging atmospheric Cherenkov telescopes and is perhaps consistent with the evolutionary stage of the SNR. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  2. Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1and 1 0 around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at  ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  3. Abstract Assuming Galactic cosmic rays originate in supernovae and the winds of massive stars, starburst galaxies should produce very-high-energy (VHE;E > 100 GeV) gamma-ray emission via the interaction of their copious quantities of cosmic rays with the large reservoirs of dense gas within the galaxies. Such VHE emission was detected by VERITAS from the starburst galaxy M82 in 2008–09. An extensive, multiyear campaign followed these initial observations, yielding a total of 254 hr of good-quality VERITAS data on M82. Leveraging modern analysis techniques and the larger exposure, these VERITAS data show a more statistically significant VHE signal (∼6.5 standard deviations,σ). The corresponding photon spectrum is well fit by a power law (Γ = 2.3 ± 0.3stat ± 0.2sys), and the observed integral flux isF(>450 GeV) = (3.2 ± 0.6stat ± 0.6sys) × 10−13cm−2s−1, or ∼0.4% of the Crab Nebula flux above the same energy threshold. The improved VERITAS measurements, when combined with various multiwavelength data, enable modeling of the underlying emission and transport processes. A purely leptonic scenario is found to be a poor representation of the gamma-ray spectral energy distribution (SED). A lepto-hadronic scenario with cosmic rays following a power-law spectrum in momentum (indexs ≃ 2.25) and with significant bremsstrahlung below 1 GeV provides a good match to the observed SED. The synchrotron emission from the secondary electrons indicates that efficient nonradiative losses of cosmic-ray electrons may be related to advective escape from the starburst core. 
    more » « less
  4. Free, publicly-accessible full text available October 31, 2025
  5. Abstract In 2017 February, the blazar OJ 287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3–10 keV) band, as measured by the Swift X-ray Telescope. This event coincides with a very-high-energy (VHE)γ-ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance of 10σ(from 2016 December 9 to 2017 March 31). The time-averaged VHEγ-ray spectrum was consistent with a soft power law (Γ = −3.81 ± 0.26) and an integral flux corresponding to ∼2.4% that of the Crab Nebula above the same energy. Contemporaneous data from multiple instruments across the electromagnetic spectrum reveal a complex flaring behavior, primarily in the soft X-ray and VHE bands. To investigate the possible origin of such an event, our study focuses on three distinct activity states: before, during, and after the 2017 February peak. The spectral energy distributions during these periods suggest the presence of at least two nonthermal emission zones, with the more compact one responsible for the observed flare. Broadband modeling results and observations of a new radio knot in the jet of OJ 287 in 2017 are consistent with a flare originating from a strong recollimation shock outside the radio core. 
    more » « less
  6. Abstract This paper investigates the origin of theγ-ray emission from MGRO J1908+06 in the GeV–TeV energy band. By analyzing the data collected by the Fermi Large Area Telescope, the Very Energetic Radiation Imaging Telescope Array System, and High Altitude Water Cherenkov, with the addition of spectral data previously reported by LHAASO, a multiwavelength study of the morphological and spectral features of MGRO J1908+06 provides insight into the origin of theγ-ray emission. The mechanism behind the bright TeV emission is studied by constraining the magnetic field strength, the source age, and the distance through detailed broadband modeling. Both spectral shape and energy-dependent morphology support the scenario that inverse Compton emission of an evolved pulsar wind nebula associated with PSR J1907+0602 is responsible for the MGRO J1908+06γ-ray emission with a best-fit true age ofT= 22 ± 9 kyr and a magnetic field ofB= 5.4 ± 0.8μG, assuming the distance to the pulsardPSR= 3.2 kpc. 
    more » « less
  7. Context. The response of imaging atmospheric Cherenkov telescopes to incident γ -ray-initiated showers in the atmosphere changes as the telescopes age due to exposure to light and weather. These aging processes affect the reconstructed energies of the events and γ -ray fluxes. Aims. This work discusses the implementation of signal calibration methods for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) to account for changes in the optical throughput and detector performance over time. Methods. The total throughput of a Cherenkov telescope is the product of camera-dependent factors, such as the photomultiplier tube gains and their quantum efficiencies, and the mirror reflectivity and Winston cone response to incoming radiation. This document summarizes different methods to determine how the camera gains and mirror reflectivity have evolved over time and how we can calibrate this changing throughput in reconstruction pipelines for imaging atmospheric Cherenkov telescopes. The implementation is validated against seven years of observations with the VERITAS telescopes of the Crab Nebula, which is a reference object in very-high-energy astronomy. Results. Regular optical throughput monitoring and the corresponding signal calibrations are found to be critical for the reconstruction of extensive air shower images. The proposed implementation is applied as a correction to the signals of the photomultiplier tubes in the telescope simulation to produce fine-tuned instrument response functions. This method is shown to be effective for calibrating the acquired γ -ray data and for recovering the correct energy of the events and photon fluxes. At the same time, it keeps the computational effort of generating Monte Carlo simulations for instrument response functions affordably low. 
    more » « less
  8. Context.Since 2019, GRAVITY has provided direct observations of giant planets and brown dwarfs at separations of down to 95 mas from the host star. Some of these observations have provided the first direct confirmation of companions previously detected by indirect techniques (astrometry and radial velocities). Aims.We want to improve the observing strategy and data reduction in order to lower the inner working angle of GRAVITY in dual-field on-axis mode. We also want to determine the current limitations of the instrument when observing faint companions with separations in the 30–150 mas range. Methods.To improve the inner working angle, we propose a fiber off-pointing strategy during the observations to maximize the ratio of companion-light-to-star-light coupling in the science fiber. We also tested a lower-order model for speckles to decouple the companion light from the star light. We then evaluated the detection limits of GRAVITY using planet injection and retrieval in representative archival data. We compare our results to theoretical expectations. Results.We validate our observing and data-reduction strategy with on-sky observations; first in the context of brown dwarf follow-up on the auxiliary telescopes with HD 984 B, and second with the first confirmation of a substellar candidate around the starGaiaDR3 2728129004119806464. With synthetic companion injection, we demonstrate that the instrument can detect companions down to a contrast of 8 × 10−4(ΔΚ= 7.7 mag) at a separation of 35 mas, and a contrast of 3 × 10−5(ΔΚ= 11 mag) at 100 mas from a bright primary (K< 6.5), for 30 min exposure time. Conclusions.With its inner working angle and astrometric precision, GRAVITY has a unique reach in direct observation parameter space. This study demonstrates the promising synergies between GRAVITY andGaiafor the confirmation and characterization of substellar companions. 
    more » « less